Sinonasal T2R-mediated nitric oxide production in response to Bacillus cereus

نویسندگان

  • Ryan M. Carey
  • Alan D. Workman
  • Carol H. Yan
  • Bei Chen
  • Nithin D. Adappa
  • James N. Palmer
  • David W. Kennedy
  • Robert J. Lee
  • Noam A. Cohen
چکیده

BACKGROUND Upper airway epithelial cells produce bactericidal nitric oxide (NO) in response to both gram-positive and gram-negative bacteria. Our previous work demonstrated that T2R38, a bitter taste receptor (T2R) expressed in airway epithelium, produces NO in response to quorum-sensing molecules secreted by Pseudomonas aeruginosa. We also demonstrated that Staphylococci products elicit an NO response when using a T2R-independent pathway. When screening additional human pathogens for epithelial T2R activation, we found that the gram-positive aerobe Bacillus cereus secretes a T2R agonist that yields NO production. OBJECTIVE The objective of this study was to characterize the activating B. cereus product(s) and to describe the epithelial cell signaling pathway involved. METHODS Sinonasal air-liquid interface cultures were treated with B. cereus conditioned medium (CM), and NO production was measured by using 4-amino-5-methylamino-2',7'-difluorofluorescein fluorescence imaging. Ciliary beat frequency (CBF) was assessed in response to B. cereus CM. Pharmacologic studies that use inhibitors of the T2R-signaling pathway were used to determine if the production of NO was mediated by a T2R. Purification studies were performed to analyze the physical properties of the activating product(s) contained in the CM. RESULTS A product(s) secreted by B. cereus induced NO production and increased CBF. The response varied markedly between individual patients and involved two important components of bitter taste signaling, phospholipase C isoform β-2 and the transient receptor potential melastatin isoform 5 ion channel. CONCLUSIONS This study demonstrated that a B. cereus product(s) elicited an NO-mediated innate defense response in upper airway epithelium that seemed to be partially mediated by a T2R signaling pathway. The active product that elicited the NO response was likely a small nonpeptide compound, but further purification is required for identification. Patient variation in the NO response to B. cereus products could potentially be due to genetic differences in T2Rs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide production is stimulated by bitter taste receptors ubiquitously expressed in the sinonasal cavity

BACKGROUND Bitter taste receptors (T2R) have recently been demonstrated to contribute to sinonasal innate immunity. One T2R, T2R38, regulates mucosal defense against gram-negative organisms through nitric oxide (NO) production, which enhances mucociliary clearance and directly kills bacteria. To determine whether additional T2Rs contribute to this innate defense, we evaluated two other sinonasa...

متن کامل

In vitro effects of anthocyanidins on sinonasal epithelial nitric oxide production and bacterial physiology

BACKGROUND T2R bitter taste receptors play a crucial role in sinonasal innate immunity by upregulating mucociliary clearance and nitric oxide (NO) production in response to bitter gram-negative quorum-sensing molecules in the airway surface liquid. Previous studies showed that phytochemical flavonoid metabolites, known as anthocyanidins, taste bitter and have antibacterial effects. Our objectiv...

متن کامل

Cloning, Expression, and Purification of a Nitric Oxide Synthase-Like Protein from Bacillus cereus

The nitric oxide synthase-like protein from Bacillus cereus (bcNOS) has been cloned, expressed, and characterized. This small hemeprotein (356 amino acids in length) has a mass of 43 kDa and forms a dimer. The recombinant protein showed similar spectral shifts to the mammalian NOS proteins and could bind the substrates L-arginine and N(G)-hydroxy-L-arginine as well as the ligand imidazole. Low ...

متن کامل

بررسی تأثیر ضدّ‌ التهابی رزبنگال در ماکروفاژهای فعال‌شده با لیپو‌پلی‌ساکارید در غیاب نور

Background and Aim: Rose Bengal is a water-soluble, anionic xanthin dye. It has been used as a safe compound for many years. But, anti-inflammatory effect of Rose Bengal has not been studied. The aim of this study was to determine the effect of Rose Bengal on nitric oxide production and its inflammatory induced response and inducible nitric oxide synthase expression in LPS-activated J774A.1 mac...

متن کامل

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2017